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ABSTRACT

Amplification of ground motion in three dimensions due to arbitrarily shaped

cylindrical alluvial valleys w -been investigated in this paper.> A hybrid numerical
method combining integral representation and finite element discretization ba- been- ,

employed. The incident wave is either a plane P or SV wave, propagating at an arbitrary

angle to the axis of the cylindrical valley. Numerical results showing significant dynamic

amplification are presented for various angles of incidence and two different geometries

of the valleys. . .
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INTRODUCTION

One of the basic problems in engineering seismology is the influence of local geo-

logical irregularities on the ground motion caused by propagating seismic waves. Anal-

ysis of many earthquakes ( e.g. Mexico City earthquake 1985,San Fernando earthquake

1971) show that large amplification of ground motion occurs at topographic changes and

when the material properties are softer near the surface than that of the surrounding

medium. Experimental studies by Kagami et al.(1982,1985), King and Tucker(1984),and

Tucker and King(1984) have confirmed this amplification phenomenon. Analytical solu-

tions to this problem have been obtained only for simple geometries (e.g. Trifunac 1973,

Wong and Trifunac 1974a, Sanchez-Sesma and Rosenblueth 1979). Analysis of more

complicated geometries requires numerical techniques such as finite difference and finite

elements. Large geometrical dimensions of geotechnical problems limit the applicability

of these methods asually to some simple situations in two dimensoins.

To avoid the difficulties associated with the discretization of the entire domain

the boundary integral equation method has been found to be effective (Sanchez-Sesma

and Rosenblueth, 1979; Dravinski ,1982a,b,c; Wong, 1982; Dravinski, 1983; Dravinski

and Mossessian, 1987a) for studying geotechnical problems. In this method only the

boundary of the scatterer is being discretized. The main advantage is in the reduction

of the number of unknown variables. However, this method can be usefully applied only

when the material inside the boundary is isotropic and homogeneous (Kobayashi, 1983).

In this paper, we present a hybrid method which combines the advantages of the

finite element technique and the boundary integral method. In the past it has been

applied to study scattering of elastic waves in two dimensions (Franssens and Lagasse

1984 and Shah et al., 1982).
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Here, we study the scattering of elastic waves due to cylindrical alluvial valleys

when the plane of propagation has an arbitrary angle with the axis of the scatterer. Thus

the problem is three dimensional and to our knowledge this has not been investigated

before.

Numerical results are presented for semi-circular and semi-elliptical cylinder-

ical alluvial valleys. The incident plane P and SV waves propagating at arbitrary

angles are considered. Results for the particular case when the direction of incidence

lies in a plane perpendicular to the axis of the cylindrical valley have been found to

agree with previously published results. It is shown that amplification can be larger

for directions of propagation oblique to the axis than when they are perpendicular.

STATEMENT OF THE PROBLEM

Figure 1 shows the geometry of the problem. As shown cylindrical inclusion of arbitrary

surface shape with axis parallel to the y-axis ( not shown ) is perfectly bonded to ho-

mogeneous, isotropic elastic half-space. Let us consider two artificial boundaries C and

B. The medium is, now, divided into two regions. The interior region R, is bounded by

the boundary B and part of the free surface. The exterior region R. is bounded by the

free surface and the contour C and extends to infinity in the x and z directions. The

area between the contours C and B is shared by both regions. All the inhomogeneities

are assumed to lie wthin C.

We consider plane harmonic P or SV wave incident at an arbitrary angle to the

y-axis ( see Fig. 2). Thus the displacement has all three components.

Let ui be the displacement component in the i-th direction in a Cartesian frame

and let Tij be the second order Cauchy stress tensor (ij = 1,2,3) having time harmonic

behavior of the form e-i t where, w, is the circular frequency (rad/sec). In each region

u, and Tj satisfy the equation of motion given by Eq. (1),

Ti, +-w 2 uis - -f,, (i,j = 1,2,3) (1)
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where p is the mass density, fi is the force per unit volume, and the factor, e- ' -, has

been dropped. The stress free boundary conditions along the surface of the half-space

are specified by,
oazz = 0

0',z = 0

azy 0.

The scattered field also satisfies the radiation condition at infinity.

(I) The Exterior Region R.

In this region the displacement ui is composed of two parts,

() +(a)ui=ui + U , (2)

where u!0) is the free-field displacement (including the incident waves and their reflec-

tions from the free surface) and u ) is the contribution of the scattered waves. The

scattered displacement field is represented by a surface integral as discussed below.

Starting with Betti's reciprocity theorem ( Aki& Richards 1980), a pair of solu-

tions to Eq.(1) for the displacements can be written as

I /(Q. 0 _ _ = c (IL -s L -_ t)dc. (3)

A

where use has been made of the radiation condition. In the above u t represent the

displacement and surface traction caused by body forces f, while L, L are the displace-

ment and the surface traction due to body forces g in region R.. The scattered field is

taken to be the first field. The second field is the Green's solution. The scattered field

has no sources in R., hence f = 0 . For the Green's displacement field the source is

represented by

where I(r - r')l = V/(z - x,)2 + (z - z') 2 , is the unit vector in the i-th direction, and

k2= w/c 2 , c2 being the shear wave speed in R.. This represents a line source at (z', z')
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varying in the y-direction with wavelength '2". The expression for the Green's dis-

placement tensor, G1j, and the corresponding stresses, Eijk, are presented in Appendix

A. Substituting the expression for g into Eq.(3) and using the divergence theorm ,yields,

dropping the factor eI t 2N,

ui' ) (Z ' , Z') - (Gij T(k) - uJ S) iJk)nkdc. (4)

C

In writing Eq.(4) the condition of vanishing traction on the free surface z=O and

the radiation condition at infinity satisfied by the scattered and the Green's displacement

fields have been utilized. The contour integration is carried out in clockwise direction

and nk are the components of the outward unit normal vector to C. Here we choose

the source points (X', z') to be on the contour B inside R. (Figure 1). This precludes

the singularities arising from evaluating the integral with the source and the observer

at the same location.

Now we apply Eq. (3) to the part of region R 1, which includes the scatterer and

bounded by contour C. The two fields are the Green's field, with its source outside this

region, and the incident field. The incident field has no sources here. This yields

0 chG.t~o) - u t'*Fik) C-n,,) dc.()
'1 .k (5

C

The integration along C is calculated in counterclockwise direction. JO) and T( )

denote the displacement and stress tensor associated with the incident field, respectively.

Reversing the direction of integration of Eq. (5) and adding it to Eq. (4), using Eq.

(2), yields

u,(x',z') = - uj,,ijk)nkdc + u , (6)

C

Eq. (6) is the integral representation of the total field at any point in the exterior region

RD.
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(II) The Interior Region R,

This region encloses all the inhomogeneities and anisotropies. In order to get

the solution in region R, , we use the finite element technique. In this approach, the

area of interest R, is divided into a number of elements. In each element the particle

displacement is given by

U, = {f'}T{U,;i} (7)

where

i=1 , 2, 3

S= 1 ..... n n is the number of nodes per element,

and {1} is an nxl column vector representing the shape functions for the ele-

ment,

{)i} = i 4D2 ... 4] T  (8)

In Eq.(7) {ui;t} is the particle displacement vector corresponding to the nodal points

of each element, T, {.}, [-] denote a transpose, a column vector, and a row vector,

respectively. The strain within an element related to the displacement field {u}6 is

given by

{e} = [ID[ ]{u}, (9)

- [B]{u}., (10)

where [L ] is an operator matrix
a 0 0

0 ig 0

[L]= 0 (11)
0 a
6-; 0
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and

[B] = (LI[$I (12)

In order to determine the elemental impedance matrix, let us consider the energy func-

tional E,

E = 1/2JJJf (T.e* _ pc. 2 u.u')dxdydz - 1/2JJ (tB-U! + t!.UB)dJ, (13)

where T and e are stresse and strain column vectors, respectively, defined as

T = {T} = [TzzT,,T..TzTzTz,]T

and

e = {e} = [ezze, 1 ezzez~ezzez,1 T

tB, UB represent, respectively, the traction force and the displacement at the

boundary B. For the purpose of eliminating the intergration over the y-direction, it can

be shown that if one takes the integration over one wavelength A, Eq.(13) becomes

E/A = 1/2JJ(T.e - pw2 u.u*)dxdz - 1/2J(tB.uj + tj.UB)dC (14).

The stresses T are related to the strains e by the constitutive equation

{T} = [D]{e}. (15)

Using Eq.(15) and Eq.(7) in Eq.(14) and taking the variation, the equation of motion

for region R, can be written as

,,, 5  ru1 ',
Sr SI B U = (16)
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where the elemental impedence matrices Sfj are represented by

[S1t = I ([BB'Ti[D]B1e - pw,.[4De]T [, $J)dxdz (17)
Ae

and the nodal force vector due to applied surface traction,

{Y}e = J[B']T(D][#t,]{ndc. (18)

C.

Here A, and C. denotes, respectively, the area and the boundary of an element and

{n} is the unit vector normal to C.. [ D ] is 6 x 6 matrix of the element material

elastic constants. It is clear from Eq.(17) that [S]. is hermitian matrix. In Eq.(16)

{ur} and {uB} represent the interior and boundary nodal displacements, respectively.

{YB} represent the interaction forces between regions R, and R, at the boundary nodes.

Since there are no forces on the interior nodes, hence {Y} = 0, and Eq.(16) becomes,

[1;; Sill ur}{B (19)Ser SBB UB I= I,

Thus by using the upper part of Eq.(19), the boundary nodal displacement {u8 }

can be related to the interior nodal displacement {ur} as

{ur} = -[Sr]-'[SrB]{uB}. (20)

Now, Eq.(6) and Eq.(19) should be combined in order to solve for the displacement at

the boundary nodes NB. To achieve this Eq.(6) should be evaluated at the nodes on the

boundary B.

Using the constitutive relation to express T,, and Eq.(7) to present the displace-

ment, Eq.(6) becomes

u(z',z') = u()(z', z') + [([G][DI[Br] - [tI]T[.]){n}dc] {ur}

+ ([G][DI[BBj - [4B]T[E]){n}dc] {UB}, (21)

C
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where [B1] = [L][4 1 ] and [B3] = [LJ[4B]. Evaluating the integrals at all the

nodes NB on the boundary B, Eq.(21) can be written as

{UAB} = [ABI]{ul} + [ABB]{UB} + (U} (22)

wher [AB 1 ] is 3NB x 3N and [ABBl is 3NB x 3NB complex matrices. Substituting

Eq. (20) into Eq. (22), and collecting terms, yields

(uA} = -[Ai][Sijl-'[Sl]{uB} + [ABBI{UB} + {U } (23)

Once {uB) is solved from Eq. (23) we then use Eq. (20) to find {ul}. In the following

we present numerical results for the displacement amplitudes on the surface of the valley.

Numerical Results

Normalization of Variables.

All the variables used in this paper are presented in dimensionless form. The

material properties of the valley are normalized with respect to those of the half space.

For that purpose we have chosen the shear velocity fi and the shear modulus p. to be

unity, distances are normalized with respect to half the width of the finite element region

H, and the displacements are normalized to the absolute amplitude of the displacement

of the free-field motion (VI u0o)12 + u(0)12 + Iu () 12). The normalized frequency e is

defined as

e=k 2H

where k2 is the shear wave number in the half space. The poisson's ratio for all the

materials is taken to be 1/3.

Testing the method

Suffeciently general computer code has been written to investigate the three di-

mensional problem. In order to gauge the accuracy of the results we, first, let the
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material of the alluvial valley to have the same properties of the half space. The cal-

culated displacements should be equal to the free field displacements. Deviation from

the free field response is taken as a test of the inaccuracy. When the error was found to

be unacceptable we increased the number of elements in the interior region R 1. It was

found that 6 elements per wavelength are suffecient to achieve the required accuracy.

Second, the generality of the program was tested by running the problem of

scattering of plane harmonic P and SV waves by semi-circular alluvial valley when

= 0. This is a plane strain problem and was studied by Dravinski and Mossessian

(1987a) for weakly inelastic materials. Figures 3 and 4 show very good agreement of

the results for all the angles of incidence and both types of incident waves ( P and SV

and e =7r.

Semi - circular alluvial valley.

For semi-circular valley the finite element part is compsed of 190 elements.

Isoparametric elements of 3 and 4 nodes are used. The number of boundary nodes

N& is 29. The number of the interior nodes NI is 178. The depth of the finite element

region in the z-direction is taken to be equal to H. The results presented here are for

e = 7r . The area between contours B and C is occupied by one layer of elements. The

shear modulus of the valley P is taken to be 1/6 and the shear velocity $1 is 1/2. Fig-

ures 5 and 7 show the normalized amplitudes of uz, u,, and u, when P and SV waves

are incident in a plane making an angle 45 degree with the axis of the valley. Figures 6

and 8 show the corresponding results when the plane of propagation is parallel to the

yz plane. Figure 5 shows large amplification in the y-component of the ground motion

when P wave propagates with 01 = 60*. Also, figure 7 shows large amplification when

the angle of incidence of SV wave, 02, is 30 degree. From figures 5 and 7 it is seen that

uy is generally amplified the most compared with u, and u.. Comparison of Fig. 5-8

shows that, exept when SV wave is incident in the plane of yz, u. is generally amplified
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more. For SV wave incident in the yz-plane one finds large amplification in vertical

displacement when 82 = 600. Also of interest is to note that larger amplification occur

for incidence in the 450 plane.

Semi - elliptical alluvial ralley

In this case different finite element mesh is used. The total number of elements

is 146 , N& and N1 are equal to 29 and 131, respectively. The ratio of the minor axis

to the major axis is 0.7 and the major axis is along the x-axis. The material of the

semi-elliptical valley has the same properties as that used in the semi-circular case. e is

again taken to be r. Figures 9 and 10 demonstrate the results for the plane strain case

while figures 11, 12, 13, and 14 show the results for different angles of incidence. It is

seen that larger amplifications occur in a semi-circular valley than in a semi-elliptical

one. Also, it is found that for P-waves amplification increase with 01, but for SV-waves

they remain about the same first as 82 increases and then decrease. Here the most

amplification of displacements occurs when P wave propagates in a plane parallel to the

axis of valley and 01 = 60 and when SV wave propagates in that plane but with angle

82 = 30. In contrast with the semi-circular valley we find that u. is amplified most for

the semi-elliptical valley.

Conclusion

A hybrid numerical method hes been employed to investigate the three dimen-

sional amplification of ground motion due to arbitrarily shaped cylindrical soft valley.

This method combines the integral representation and the finite element techniques.

Numerical results are presented for different angles of incidence. These results show

large local amplification when the plane of propagation is oblique to or contains the

axis of the valley. This finding is rather important, because so far only two-dimensional

problems have been studied. It also shows significant influence of the shapes of the

valley on the ground motion.

11



This method is also applicable to study the scattering of SH and Rayleigh waves

and to a layered medium. These results will be communicated later. The very important

feature of this method is that the calculations of Green's function and stresses are

independent of the shape and the material of the valley. This means that for different

shapes of valley and the same frequency the Green's functions and stresses has to be

calculated only one time. This is the most time consuming part of the solution. This

differs from an indirect boundary integral equation formulated on the boundary of the

scatterer for which Green's tensor has to be recalculated at each change in the geometry

of the scatterer.
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APPENDIX A

Green's Function and Stresses.

(1) Displacements

00 00

Gl-= --L~Jg ii(cosek(z -x')dk 012 =Z J12 ifysne~ '
0 0

00 00

G13 = -ZLJg1 3 e iffysin ek(z -xI)dk G2 1 = ]dLf 21 e iff sin ek(x - x')dk
o 0

022 = 922 rfe ecosek(zI')dk G23= fJ 2 3 ei"y Cos ek(x - x')dk
0 0

Go 00

031 = L f g3 1 e'sin ek(zT - z')dk G32 93g~2 eiefCOS cek(X -Id

ov 0 ~i

00

G33  93 C.. J iffy' coosek(x - x')dk
0

where
911--= k -_ l)+(2 k-~~-, + U22 )

k 1

g12 = -y U) + -U 2
71 1~

- c (1 -2eif~~- + U311

72(l-~



913 -f(± -Y ve z-' + U,3  +: k ± -~ ~- ' + U2 x)

k ( : F Y 2 e i - f z -' + U 3 .)

1 12

92 U..k~7E3' IN U) + + U3 )
71 72

71 7

g2 =-(e i(z3) + U,)+-~ 2eYe33) + U2-)

+ (1 e*-y~ zz' + U3z)

132 =+ U11) + (k- U21

+ ( . )[:F(1 - f 2 )e~i72(s#) + U31]



933 + U,, + k (kfe'2(ZZ') + U2z)

+ + UaZ)Y~(XZ'

Ui: = {kQe -tl 4k-11 -2 (1 -2K
2 )e.y 2 ex l . 'fle

F

k -2 y1-2 2K 2 )-i-

U31 = -2)el-flez - (4Q + F y1 2 )ei-f2fZ}Si-72ez'

F F

4_ -t~ - 2K 2 ) _ _______2_2

U~,F F e

4 2 - 2
2 ( 1- 2K 2)___

U31 =F e 7 "+ (1 - F

Utz + 4K 2 (1 - 2K 2)z

=2 4ky-tt t2( -2K)e~vE-
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U3 (4tj112'1 -2KI) e~
F

P W 1/17 8 2""YF )

F

F

F = (1 -2K 2) 2 + 4K 2 .,i7 2 )

'7 VFl i 71 K2 - yK K = vfk2 + C

7=kj/k 2  e =k 2H

ki = Longitudinal wave number = /c1 l.

Cl = Longitudinal wave velocity in R..

Note that in the above the coordinates x,y,z have been nondimensionalized with

respect to H and the ± sign correspond to z > or < z', respectively.

(I) Stresses

00 1
-2){k 1j +9I1i+ 1z913}+ 2kgj dksinek(z - x')e

0
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L2 - (-'g Ii + kg 12 1 Cos ek(z - x~'fd

0

k200

I Ji F- 7-T-1 + k913] COS ek(X - x)'~d

0

k200

Ey tF- -12 + . g1 3] sin ek(x - xI)etffydk
jr ie Tz
0

00

.9124L ie 913 i---Zg sin ek(x-x' )eae4fdk

E 2 zz = 7-J[(r- 2){kg 2i + C922 + i -g. 2 3 } + 2kg21j Cos ek(z - xi)Pefdk

0

E =y -i L2Jfg 21 + kg22 1 sin ek(zT - xl)e"'dky

0

E2x= ti-7r-g21 + k923~. Si ek Z T-Cfydk
2w JFez
0

E 1 2x k200

E2 15 = IL±2 2 + 6g 231cosek(x - zI)eiefydk

0

E2 zz7(~ 2){kg 21 + C922 + I 93 + 1 -g2

27r ie IZ 2- -lzg COS ek(z zIT)eiEfydk
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00

r -k 2 f r72  18a
!3zz i = 9- (i -)k 31 + g32 + 7- T-33 } + 2kg~j cos ek(z - xI)enEy A

00

00

E~x-i- , (-g~j + k 31 sin ek(x - x)'fd
0

00

k2 1[r-iOe'f d
E3x: j_ - le- 5zg + k9331 sin ek(z-

01
000

-k 2 ~ L r2 181
~~3zz ~ ~ y =- 579 -2{k~ + 32 + t9~33 +o 2e 8 ~]C6k(x - ?)eaEf 3dk

00
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APPENDIX B

Incident Displacement

(I) P wave

Let us consider P-wave incident in the XZ plane. The incident and reflected

potentials can be written as:

,t(r) -aie(71jZ+KX-w)

%k4r) -1i(jZK-9

The components of the displacement vector in the XZ plane, Ux, Uz, can be

derived from,

u = V0+ V A (ey'P)

where 4P= 4D) +.g(r) and IF, ,(r).



Displacements in the xz plane are related to those in the XZ plane by the following

relations,

U, = Uxcos and uY = UCsino.

The full expressions for u., t;,, u, are documented below.

u= = i{k(al eia  + eia ) - 2Cy2cosO Ca*2}e ie(k+z + y )

uY = i{ (ajei l + CiaS) - bi-"2 sinO eia2}eiq(kz+f1)

U, =i{(ale ia - eia') + biKet a 3 }e(kx+(l)

(1 - 2K 2) 2 - 4K 2.y172  b, = -4Kt(I - K2 )

F ' F
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F = (1 - 2K 2 )2 + 4K'-Yi -f2

G 1 =Ie-y1 :, Cf2 ef 2 Z, a 3 =-eyIz

k=r' sin 1 cos4., - 'sinl sin , K 2 = 2 + k2

1 angle of incidence with the negative Z-axis in the XZ plane (00 < O1 900).

= angle between xz plane and XZ plane (0 < 0: 5 1800).

(II) SVwave

Let us consider incident SV-wave in the XZ plane:

%p(i) :eie(--2Z+KX-w,)

4(r) = a2eie(IZ+KX-wt)

SP(r) b2ei(-f2Z+KX-wt)

Following the same steps as before in the P-wave, we get:

-4K'y 2(1 - K 2 )
a2 = F
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b_-2 ( 2K 2 )2 - 4KI -, y2
F

uz= zi.{ka,2 e' 0 1 + - ,cosO~e'0 3 - beIC3lei(*~Y

uy= i{ a2 e iol + 723inO[e ift - b2 e i01] }ee(kz+Cy)

U,: = if-yla2cr + K [eif + b2 eta.2 De (kz+fy)

where f3= -e 72 Z, k 3 in8 2 cosk, C = sinO2 sin4

and 02 is the incidence angle with the negative Z-axis in the XZ plane.



List of Figures

Fig.1 Geomtry of the problem.

Fig.2: Incidence angle in 3-D defined in terms of 4, and 0.

Fig.3: Normalized Surface Displacement Amplitude for Semi-Circular Alluvial Valley.

r, 1, V. = 1/3, o= 1.0

-i 1/6,vi = 1/3,/31 = 0.5)

(a) Incident P-wave: = 0 , l = 00.

(b) Incident P-wave: 4, = 0* , 81 = 300.

(c) IL..ident P-wave: =0, 01 = 600.

Fig.4: Normalized Surface Displacement Amplitude for Semi-Circular Alluvial Valley.

(a) Incident SV-wave: 4 = 00 , 02 = 00.

(b) Incident SV-wave: 4 = 00 , 92 = 300.

(c) Incident SV-wave: 4, = 0* , 02 = 600.

Fig.5: Normalized Surface Displacement Amplitude for Semi-Circular Alluvial Valley.

(a) Incident P-wave: 4, = 450, 91 = 30*.

(b) Incident P-wave: 4, = 45* , 01 = 600.

Fig.6 : Normalized Surface Displacement Amplitude for Semi-Circular Alluvial Valley.

(a) Incident P-wave: 4, = 900 , 01 = 300.

(b) Incident P-wave: 4 = 90 ° , 01 = 600.

Fig.7: Normalized Surface Displacement Amplitude for Semi-Circular Alluvial Valley.

(a) Incident SV-wave: 4 = 450 , 02 = 300.

(b) Incident SV-wave: 4 = 450, 62 = 600.

Fig.8 : Normalized Surface Displacement Amplitude for Semi-Circular Alluvial Valley.

(a) Incident SV-wave: 4 = 900 , 02 = 300.

(b) Incident SV-wave: 4 = 900 , 02 = 600.

1



Fig.9: Normalized Surface Displacement Amplitude for Semi-Elliptical Alluvial Valley.

( e= r,Po--- 1,O-= 1/3,8= 1.0

p, = 1/6, v, = 1/3,81 = 0.5, Minor Axis/Major Axis = 0.7)

(a) Incident P-wave: -00 ,01 = 00.

(b) Incident P-wave: 4 0, 0 1 = 30 ° .

(c) Incident P-wave: 4 = 00 , 01 = 600.

Fig. 10: Normalized Surface Displacement Amplitude for Semi-Elliptical Alluvial Valley.

(a) Incident SV-wave: , = 00 , 02 = 00.

(b) Incident SV-wave: 4 = 0* , 02 = 300.

(c) Incident SV-wave: 4 = 00 , 92 = 600.

Fig.11 : Normalized Surface Displacement Amplitude for Semi-Elliptical Alluvial Valley.

(a) Incident P-wave: 4, = 450 , 01 = 300.

(b) *Incident P-wave: 4 = 450 , 91'= 600.

Fig.12: Normalized Surface Displacement Amplitude for Semi-Elliptical Alluvial Valley.

(a) Incident P-wave: 4 = 900 , 01 = 300.

(b) Incident P-wave: 4 = 900 , 81 = 600.

Fig.13: Normalized Surface Displacement Amplitude for Semi-Elliptical Alluvial Valley.

(a) Incident SV-wave: 4 = 450 , 92 = 30*.

(b) Incident SV-wave: 4 = 450 , 92 = 600.

Fig.14: Normalized Surface Displacement Amplitude for Semi-Elliptical Alluvial Valley.

(a) Incident SV-wave: 4 = 900 , 92 = 300.

(b) Incident SV-wave: 4, = 900 , 92 = 60*.

2



co~x
BB

C
FEM

C

B

BED ROCK

z
Fig. 1 Geometry of the problem



x

YD x

z

Fig. 2 The arrow indicates the incident plane wave
direction which lies In the plane of Xz that
makes an angle with the plane of xz
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